ONETT
Systematic Knowledge Graph Generation for National Access Point

David Chaves-Fraga, Ontology Engineering Group
Universidad Politécnica de Madrid, Spain
Adolfo Antón, OEG-UPM
Jhon Toledo, OEG-UPM
Oscar Corcho, OEG-UPM

dchaves@fi.upm.es
@dchavesf
09/09/2019
Sem4Tra@SEMANTiCS2019
“In order to facilitate the easy exchange and re-use of these data for the provision of comprehensive travel information services, corresponding metadata and information on the quality of the data will be accessible to users through a national or common access point.”

1 Supplementing Directive 2010/40/EU of the European Parliament and of the Council with regard to the provision of EU-wide multimodal travel information services
Are Semantic Web technologies a good option to integrate and generate transport data at scale for the National Access Points?

Requirements:

- Ontology based on Transmodel
- Maintainable Knowledge Graph (KG) generation from other data models
- Efficient and robust KG Generation engines
Why Transmodel?

Transmodel is the short name for the European Standard “Public Transport Reference Data Model”:

- **European?** European ITS Directive 2010/40/EU to provide EU-wide multimodal travel information services available across borders.
- **Standard?** CEN is the European Committee for Normalization.
- **Data Model**: NAP should use the CEN data exchange standard NeTEx CEN/TS 16614
Transmodel is organised in 4 main sections:
- Common Concepts
- Network description
- Timing information
- Vehicle scheduling

But also:
Transmodel Ontology powered by the Linked Open Terms methodology for ontology development

Legend:
- Actor
- Activity
- Output

LOT Methodology http://lot.linkeddata.es
@Ontology Engineering Group
Pitfalls...

- The movement of people through many countries, many roads, different policies..
- Huge domain with plenty of technical papers.
- Complex projects for complex reality.
- Different terms in GTFS and Transmodel for similar concepts.
- Some controversial terms in basic concepts as Trip, Journey, Passenger, Vehicle, Service, Organisation.
- Vocabulary split in modules for faster development.
Are Opportunities:

- The transport system is always testing its performance.
- Solid foundations for better implementations.
- Simplicity comes from knowledge based projects.

Check the state of art:

- https://github.com/oeg-upm/transmodel-ontology
- 2 modules already published: authorities and facilities
- 3 modules in process: commons, journeys, fares
KG Generation on the Transport Domain

Transmodel Ontology

[R2]RML File

Knowledge Graph Generator

Extract

Transform

Load

Federated Query Engine

SPARQL National Access Point
- Open and easy model for publishing transport data
- Complex model:
 - Multiple joins among CSV files (performance)
 - Optional files and fields (completeness)
RML: The RDF Mapping Language

- Support for multiple data sources (CSV, JSON, XML, etc.)
- Extension of the W3C recommendation R2RML
- De-facto standard for KG Generation from heterogeneous data sources
- Emergence of its use
- User-friendly serialisation YARRRML
 - See: http://rml.io/yarrrml/
GTFS FILE UPLOADER

Spain

Introduce your city.

CTRIM

Introduce the type of transport.

Choose a file... Browse

UPLOAD
Data Analyzer & Mapping Translation

Original GTFS YARRRML mapping

```java
prefixes:
  trm: https://w3id.org/transmodel/terms#
  trmo:https://w3id.org/transmodel/resource/
  dct: http://purl.org/dc/terms/
  foaf: http://xmlns.com/foaf/0.1/
  schema: http://schema.org/

mappings:
  fare_rules:
    sources: ['../gtfs/fare_rules.csv~csv']
    s: trmo:fare_rules/$(fare_id)
    po:
      - [a, trm:FareProduct]
      - [trm:GroupOfLinesRef , $(route_id)]
      - [trm:AuthorityRef , $(route_id)]
      - [trm:StartTariffZoneRef , $(origin_id)]
      - [trm:EndTariffZoneRef , $(destination_id)]
      - [trm:TariffZoneRef , $(contains_id)]
```

Translated GTFS YARRRML mapping

```java
prefixes:
  trm: https://w3id.org/transmodel/terms#
  trmo:https://w3id.org/transmodel/resource/
  dct: http://purl.org/dc/terms/
  foaf: http://xmlns.com/foaf/0.1/
  schema: http://schema.org/

mappings:
  fare_rules:
    sources: ['../gtfs/fare_rules.csv~csv']
    s: trmo:madrid/crtm/train/fare_rules/$(fare_id)
    po:
      - [a, trm:FareProduct]
      - [trm:GroupOfLinesRef , $(route_id)]
      - [trm:AuthorityRef , $(route_id)]
      - [trm:StartTariffZoneRef , $(origin_id)]
      - [trm:EndTariffZoneRef , $(destination_id)]
      - [trm:TariffZoneRef , $(contains_id)]
```

Data Analysis + Mapping Translation
prefixes:
 trm: https://w3id.org/transmodel/terms#
 trmc: https://w3id.org/transmodel/resource/
 dct: http://purl.org/dc/terms/
 foaf: http://xmlns.com/foaf/0.1/
 schema: http://schema.org/

mappings:
 fare_rules:
 sources: ['fare_rules.csv~csv']
 s: trmc:madrid/crtm/train/fare_rules/$(fare_id)
 po:
 - [a, trm:FareProduct]
 - [trm:GroupOfLinesRef , $(route_id)]
 - [trm:AuthorityRef , $(route_id)]
Website: https://osoc-es.github.io/onett/

Application: https://snap.summerofcode.es

Code: https://github.com/osoc-es/?q=onett

SNAP project: https://www.snap-project.eu/

SDM-RDFizer: https://github.com/SDM-TIB/SDM-RDFizer
Conclusions

- Declarative solution > maintainability
- On the fly generation of mappings (1st approach)
- Adaptability over the heterogeneity of the GTFS model
- Efficient KG generation
- Use case for the KGC W3C community group

Future work:

- Transformation to NeTEx (using mappings)
- Fare recommendation system
- Quantitative evaluation of ONETT
- Integration in commercial product powered by SNAP
ONETT
Systematic Knowledge Graph Generation for NAP

David Chaves-Fraga, Ontology Engineering Group
Universidad Politécnica de Madrid, Spain
Adolfo Antón, OEG-UPM
Jhon Toledo, OEG-UPM
Oscar Corcho, OEG-UPM

dchaves@fi.upm.es
@dchavesf
09/09/2019
Sem4Tra@SEMANTiCS2019