Predicting phase durations of traffic lights using live Open Traffic Lights data

9th September 2019
International Workshop On Semantics For Transport 2019

Brecht Van de Vyvere – Karel D’Haene - Kurt D’Haene - Pieter Colpaert – Ruben Verborgh
IDLab (IMEC – Ghent University)
Innovating traffic control data

How can route planners reuse this information?
Can the phase duration of dynamic traffic lights be predicted accurately and how should this be done?
Simple algorithms give a good start, but more context information is needed

Semantics of traffic lights data

Predicting phase durations

Demo
MAP describes which connections are possible at an intersection.

Open Traffic Lights ontology: https://lov.linkeddata.es/dataset/lov/vocabs/otl
SPAT describes the signal phase and timing of a signal group
https://opentrafficlights.org
Semantics of traffic lights data

Predicting phase durations

Demo
1) Create frequency distributions of signal phase durations

Apparently, this phase takes mostly 34 seconds (for this signal group)

Historical dataset collected for 3 weeks

Bucket strategies:
 + Only per signal group and signal phase
 + Per type of day (weekday or weekend) and hour (cfr. Morning traffic on a weekday between 8 and 9 a.m.)
 + Per day (monday) and time slots of 20 minutes
2) Predict the current phase duration

10-fold cross validation: dataset split in 10 groups of SPAT updates and corresponding frequency distributions

Mean average error

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |d_p(i) - d(i)|$$
Lowest MAE with median and fine-grained grouping

<table>
<thead>
<tr>
<th>Method</th>
<th>No grouping (s)</th>
<th>Per type of day and every hour (s)</th>
<th>Per day and every 20 minutes (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>6.8</td>
<td>5.5</td>
<td>5.1</td>
</tr>
<tr>
<td>Mean</td>
<td>7.0</td>
<td>5.9</td>
<td>5.6</td>
</tr>
<tr>
<td>Mode</td>
<td>7.6</td>
<td>6.2</td>
<td>6.0</td>
</tr>
</tbody>
</table>

But what is the causality between the prediction error and the time before end of phase?
Green is more predictable than red and the prediction can be totally useless
Let users set a fixed probability as a user preference

E.g. 90% sure that phases will not take longer than 79 seconds
Discussion point 1
How can we add more context to lower the prediction error and detect exceptionally cases?

- Publish live vehicle counter dataset
- DCAT-AP, NGSI-LD context broker?
Semantics of traffic lights data

Predicting phase durations

Demo
Client-side prediction of the phase duration

https://brechtvdv.github.io/Article-Predicting-traffic-light-phases/
Discussion point 2
When should we do statistics on the server-side or client-side?

Future work: semantically describe statistics (create summaries, average, median...) that can be published server-side or generated client-side
Predicting phase durations of traffic lights using live Open Traffic Lights data

9th September 2019
International Workshop On Semantics For Transport 2019

Brecht Van de Vyvere – Karel D’Haene - Kurt D’Haene - Pieter Colpaert – Ruben Verborgh
IDLab (IMEC – Ghent University)