Interaction Network Analysis Using Semantic Similarity Based on Translation Embeddings

LEIBNIZ-INFORMATIONSZENTRUM TECHNIK UND NATURWISSENSCHAFTE UNIVERSITÄTSBIBLIOTHEK

Presenter: Damien Graux

Authors: Awais Manzoor Bajwa, Diego Collarana, and Maria-Esther Vidal

Motivation

- In vitro & vivo identification of drug target interactions is expensive, time consuming, and very laborious;
- Bringing a new drug to the market, costs≈\$1.8 billion and takes more than 10 years;
- Computational approaches predict such interactions to be then verified, helping in reducing the cost.

Question

Network based drug-target interaction prediction with probabilistic soft logic

Different solutions already exist.

Why work on this problem?

Drug-Target interaction prediction using semantic similarity and edge partitioning Kernelized bayesian matrix factorization with twin kernels

Vector Based Approaches

- Simple, multidimensional and computationally efficient vector based representation;
- Can be used as underlying input to other machine learning algorithms;
- More information can be embedded;
- Entities are comparable to each other in different dimensions;
- Simpler to visualize in vector space.

http://www.marekrei.com/blog/multilingual-semantic-models/

• We want to answer the following research question:

"Can semantically vector based representation of drug-target interaction network identify novel drug-target interactions?"

- We want to understand entity to vector (e2v) translation approaches;
- We want to develop a novel e2v approach that encodes semantic similarity value between entities too;
- We evaluate link prediction between drugs and targets.

7

Why embed semantic similarity values too?

- The **homophily principle** is the tendency of individuals to **interact** and bond with similar others;
- The presence of homophily has been discovered in a vast array of network studies;
- Individuals in homophilic relationships share common characteristics (e.g.,beliefs, values, education) that make communication and relationship formation easier;

8

Drug-Target interaction network with similarity based interactions represented with dotted lines.

https://www.semanticscholar.org/paper/Network-Based-Drug-Target-Interaction-Prediction-Fakhraei-Huang/074f3e9f973e6127dfe2eb74a51c15594ce15e25

- Published in NIPS 2013 by Antoine Bordes et al;
- True interactions are closer, corrupted interactions are moved away;
- Tree representation are considered;
- Stochastic gradient descent is used;
- It is an energy based model.

$$\mathcal{L} = \sum_{(h,\ell,t)\in S} \sum_{(h',\ell,t')\in S'_{(h,\ell,t)}} [\gamma + d(h + \ell,t) - d(h' + \ell,t')]_+$$

 $subject + predicate \approx object$ subject + predicate
otin object

http://pyvandenbussche.info/2017/translating-embeddings-transe/

SimTransE

- End-to-end approach for drug-target interaction prediction;
- Two interaction types are considered:
 - Actual drug-target interactions
 - Similarity based reinforced interactions
- Vector embeddings representing each drug & target
- Predictions made based on similarities between embeddings

SimTransE

Interaction Functions	Objective Functions	
$\begin{cases} h+l \approx t, & \text{if h interacts (l) t} \\ h+l \not\approx t, & \text{otherwise} \end{cases}$	$L_{i} = \sum_{(h,\ell,t)\in S} \sum_{(h',\ell,t')\in S'_{(h,\ell,t)}} \left[\gamma + d(h+\ell,t) - d(h'+\ell,t')\right]_{+}$	
$\begin{cases} h1 + l \approx h2, & \text{if h1 similar h2} \\ h1 + l \not\approx h2, & \text{otherwise} \end{cases}$	$\left L_{s} = \sum_{(h,\ell,t)\in S} \sum_{(h',\ell,t')\in SI_{(h,\ell,t)}} \left[d(h+\ell,t) - d(h'+\ell,t') \right]_{+} \right $	

The Architecture

The **Data Processor** parses data to RDF and creates:

- Three sets of, i.e., the subjects (s), relational entities (p), and the objects (o).
- Two matrices one representing the positive and negative interactions of entities and second with the similarity values among entities.

The Architecture

The **Model Trainer** receives as input dictionaries and matrices and:

- It resorts to the stochastic gradient descent method to optimize the position and direction of the embeddings in a vector space;
- It uses interactions and similarities between entities to solve the optimization problem, and generates embeddings as output.

The Architecture

The **Predictor** component takes the generated embedding vectors, and thresholds and:

- It iterates over all the entities and predicts new interactions of each entity with every other entity;
- It calculates the Precision, Recall and additionally, the Area Under Receiver (AUC) and the Area Under the Precision-Recall Curve (AUPRC).

Drug-Target Interaction Prediction

- Drug-target data obtained from KEGG BRITE, BRENDA, SuperTarget, and DrugBank. (Nov 2007)
- Similarity scores are computed by the SIMCOMP score (Hattori et al, J.Ame.Chem.Soc, 2003)
- 10 fold cross validation, 4 Percentiles P80, P90, P95, P98
- 90% interactions used for training, 10% for test
- Precision, Recall, AUC, AUPRC

Statistics	Nuclear Receptor	lon channel
# of drugs	54	210
# of targets	26	204
# of drug-target interactions	90	1476

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718640/

Nuclear Receptor

Area under ROC Curve Area under Precision-Recall Curve simTransE 📕 simTransE + semEP 📕 semEP random 📕 transE 📕 simTransE 📕 simTransE + semEP 📕 semEP random 📕 transE 0.85 0.8176 0.8084 0.8025 0.5816 0.799 0.5767 0.6 0.5697 0.567 0.8 0.7612 0.7491 0.7435 0.7401 0.482 0.75 0.5 0.4095 0.7 0.393<mark>6</mark> 0.3827 0.6732 0.6713 0.3915 0.3903 0.3781 0.65/9 0.4 0.6477 0.3573 0.65 0.3 0.6 P80 P90 P95 P98 P80 P90 P95 P98

Ion channel

Conclusion

1. Presented results suggest that vector-based drug-target embeddings are a suitable solution for predicting interactions.

2. Including values of similarities in the training process improves the predictive performance.

3. SimTransE is able to produce drug-target predictions with significant results.

Future Work

 Work on the problem of imbalanced classes.
 Decrease the mixed up negative examples in positive space 2. See if the results are improved while using TrasH as underlying approach

3. Include other input data sources in the training process e.g. side effect similarities.

Thanks for your Attention Questions?

LEIBNIZ-INFORMATIONSZENTRUM TECHNIK UND NATURWISSENSCHAFTEN UNIVERSITÄTSBIBLIOTHEK

Questions:

<Diego.Collarana.Vargas@iais.fraunhofer.de>

GPCR

Area under ROC Curve

Area under Precision-Recall Curve

Enzyme

Area under ROC Curve

Interaction Network Analysis Using Semantic Similarity Based on Translation Embeddings

Area under Precision-Recall Curve

Algorithm to learn simTransE vector embeddings

Inputs:

- set $S = \{(h, \ell, t)\}$ of training data.
- set *E* and *L* representing the entities and relations.
- square matrix for each entity type representing the similarity among each entity i.e. the value at index (i, j) represents the similarity value between entity i and entity j.
- hyper parameters learning rate \mathbf{lr} , margin γ , number of embedding dimensions k, number of similar interactions t, similarity threshold st, number of epochs ep.

Initialize:

 $similarInteractions \leftarrow generateSimilarInteractions(simMatrix,S,t,st)$ $\ell \leftarrow uniform(-\frac{6}{\sqrt{k}},\frac{6}{\sqrt{k}})$ for each relation $\ell \in L$ $\mathbf{e} \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}},\frac{6}{\sqrt{k}}) \text{ for each entity } \mathbf{e} \in \mathbf{E}$ *iterationCounter* $\leftarrow 0$

loop

iterationCounter + = 1if (iterationCounter == ep) then break end if $\mathbf{e} \leftarrow \mathbf{e}/||\mathbf{e}||$ for each entity $\mathbf{e} \in \mathbf{E}$ $S_{intBatch} \leftarrow sample(S, b) / sample a minbatch of size b \in S$ $S_{simBatch} \leftarrow sample(similarInteractions, b) //sample a minibatch of size b$ \in similar Interactions

 $S_{batch} \leftarrow S_{intBatch}$ $T_{batch} \leftarrow \phi$ for $(h, \ell, t) \in S_{batch}$ do $(h', \ell, t') \leftarrow sample(S'_{(h,\ell,t)}) // \text{ sample a corrupted triplet}$ $T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\} // \text{ original triple should not go as a}$ corrupted triple end for

 $S_{hatch} \leftarrow S_{sim Batch}$ $Sim_{batch} \leftarrow \phi$ for $(h, \ell, t) \in S_{batch}$ do $(h', \ell, t') \leftarrow sample(S_{simBatch(h, \ell, t)}) // sample a soft similar triplet$ $Sim_{batch} \leftarrow Sim_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\} // \text{ original triple should not}$ go as a similar triple

end for

Update embeddings w.r.t

$$\sum_{\left((h,\ell,t),\left(h',\ell,t'\right)\right)\in T_{batch}} \bigtriangledown \left[\gamma + d(\boldsymbol{h}+\boldsymbol{\ell},\boldsymbol{t}) - d(\boldsymbol{h}'+\boldsymbol{\ell},\boldsymbol{t}')\right]_{+}$$

$$\sum_{(h,\ell,t),(h',\ell,t'))\in Sim_{batch}} \nabla \big[d(\boldsymbol{h}+\boldsymbol{\ell},\boldsymbol{t}) - d(\boldsymbol{h'}+\boldsymbol{\ell},\boldsymbol{t'}) \big]_+$$

end loop

Predicted interactions based on triad rule

