LEIBNIZ INFORMATION CENTRE FOR SCIENCE AND TECHNOLOGY UNIVERSITY LIBRARY

Knowledge Graphs -A Visual Exploration

Open Research Knowledge Graph Workshop Semantics, Karlsruhe 2019

TIB

Motivation

- We live in the information age
- Every second large collections of data generated
- Structured by ontologies, vocabularies, schema
- Machine readable representations

Knowledge Graphs

- What are knowledge graphs?
 - "A knowledge graph
 - (i) mainly describes real world entities and their interrelations, organized in a graph,
 - (ii) defines possible classes and relations of entities in a schema,
 - (iii) allows for potentially interrelating arbitrary entities with each other and
 - (iv) covers various topical domains." Paulheim [1]
 - "Knowledge graphs are large networks of entities, their semantic types, properties, and relationships between entities." JWS [2]
 - 0 ...

Knowledge Graphs

Generally, gnowledge graphs organize information that is expressed in a machine-readable way as a graph G(V,E).

- We consider both A-BOX and T-BOX data.
- Elements of the graph are expressed in a triple format
 - <subject, predicate, object>
- G(V,E)
 - V : A set of vertices describing (subject or object)
 - Classes, Data Types (T-BOX)
 - Instances, Assertions (A-BOX)
 - E : A set of edges describing (predicate)
 - Relation and axioms between classes and data types (T-BOX)
 - Relations to other instances and value assertions (A-BOX)

Visualizations

Knowledge graphs have a graph structure

• Directed, Labeled, Cyclic, Multi-Graph

Directed:

• A predicate creates a connection between resources (subject and object) as a directed link.

Labeled :

- Resources are labeled (labeled nodes and links) Cyclic :
- Connections that create circle can occur

<u>Multi-Graph</u>:

• Multiple connection between two resources can occur

Visualizations

- Visualizing this graph structure can be done using graph drawing algorithms.
- However, A knowledge graph contains a large amount of triples (millions)
 - Hardware limitations for visualization
 - Limitations of human cognition.

 \rightarrow Visualizing a full knowledge graph is not practicable

The information-seeking mantra (Ben Shneiderman)

"Overview first, zoom and filter, then details-on-demand"

- Overview first \rightarrow not applicable for KG (too large)
- Zoom and filter \rightarrow keyword search (SPARQL queries)
 - Predefined set of visual properties that are returned

Language and property filter

(e.g., show for an instance the top five properties)

- Details-On-Demand
 - Interactions for exploration

• Zoom and filter \rightarrow keyword search (SPARQL queries)

- Details-On-Demand
 - Interactions for exploration
 - Identify relations between entities
 - Explore directly connected resources
 - Filtering of resources of interest
 - Find "distant" relation between entities (RelFinder)

1. Original Publication

2. Graph Curation Form

Fig. 5: Acquisition and representation of the CRISPR genome editing method using a knowledge graph.

Position paper "Towards an Open Research Knowledge Graph"

Compare		Option
Properties	Quicksort Contribution 1	Efficient parallel merge sort for fixed and variable length keys
Best complexity	n log n	n log n
Has research problem	data sorting	Sorting algorithms
Method	Partitioning	Merging
Stable	~	~
Worst complexity	n2	n log n

Visual Mappings

Considering ontologies as a sub-model of a knowledge graph

• Numerous ontology visualizations

Visual Mappings

Visual Mappings

